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The Gordon Growth Model is a valuation model that assumes that cash flows grow at a constant rate in perpetu-
ity. With early-stage companies we often have the case where the growth rates of revenue, operating expense and
capital expenditures, which are the basic components of cash flow, are not only different but are in the process of
transitioning from a short-term unsustainable growth rate to a long-term sustainable growth rate. In this PDF we
will develop the mathematics for The Schurman Vector. This vector employs the mathematics from Linear Algebra
to build a transition matrix where expected growth rates transition from a short-term rate to a long-term rate over
time. We will also develop the mathematics to add randomness to these expected paths (i.e. the expected path
becomes a stochastic path). These random paths are ideal for use in Monte Carlo simulations.

Assume that we are given the short-term rate RS and we are told that this short-term rate will decrease to
the long-term rate RL over time. This transition will be non-linear and convex to the origin. In simple terms the
mathematics for this transition from the short-term rate to the long-term rate is the matrix:vector product of a 1x2
vector of current rates and a 2x2 transition matrix. We want to construct the transition matrix such that given the
short-term rate RS the long-term rate RL can be obtained via the following linear transformation...[

a11 a12
a21 a22

]∞
×
[
RS
0

]
=

[
RL

RS −RL

]
(1)

Per the linear transformation above RS declines to RL as time goes to infinity. With the introduction out of the
way let’s begin...

Our Hypothetical Problem

We are tasked with valuing an early-stage company with current annualized revenue of $10 million. Current cash
flow is negative due to the high level of fixed costs and capital expenditures relative to revenue. The company’s
short-term (actual) and long-term (projected) economics are as follows...

Description Short-Term Long-Term Notes
Revenue growth rate (annualized) 200% 4%
Ratio of expense to revenue 300% 60% Excludes depreciation and taxes
Ratio of cap ex to revenue 150% 15%
Ratio of net cash flow to revenue -350% 25% Cash flow is before tax

For this exercise we will concern ourselves with modeling revenue although the mathematics applys to the modeling
of operating expense and capital expenditures. Note that when modeling the stochastic paths of revenue, expense
and capital expenditures correlation will be a material factor and must be modeled.

The graph below presents three possible annualized revenue growth rate (ARGR) paths - one expected path and
two random paths...
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Note that expected path is smooth and the two random paths are not. What we do know is that both paths
start at the short-term growth rate of 200% and eventually end up at the long-term growth rate of 4%. We know
that this occurs because the transition matrix is constructed to guarantee this result. Note also that the two random
paths will give us very different company values. The path that declines slowly to the long-term rate will produce
significant revenue growth and the company will do very well. The path that declines rapidly to the long-term rate
will most likely fail as revenue will never get to the point of cash flow break-even. To value this early-stage company
we will either (1) use the expected revenue growth rate path in our valuation or (2) generate random paths and
value the company via a Monte Carlo simulation.

The three paths in the chart above were constructed using the following model parameter values...

Variable Value Notes
x0 2.000 Current annualized revenue growth rate
µ 0.040 Long-term annualized revenue growth rate
θ 0.400 Annual rate of mean reversion
σ 2.000 Mean reversion rate volatility (a multiplier)
Z – A normally-distributed random variate

An Overview Of The Mathematics

This overview is for readers who are more interested in how to use the equations rather than the mathematics used
to derive them. In this section we will demonstrate the relevant equations and leave the heavy mathematics to the
sections that follow.

Assume that we want to be able to model revenue by month. With that end in mind our first task will be to
convert the annual rates in the parameters table above to monthly rates. The relevant annual-to-monthly rate
conversions are as follows...

Variable Value Notes Calculation

x0 0.09587 Current monthly revenue growth rate (1 + 2.00)1/12 − 1
µ 0.00327 Long-term monthly revenue growth rate (1 + 0.04)1/12 − 1
θ 0.04168 Monthly rate of mean reversion 1− (1− 0.40)1/12

The table below presents the first six months of our revenue model where the variable t represents time in months,
xt is the revenue growth rate for month t, x̂t is the cumulative revenue growth rate over the time interval [0, t], Ĉt
is annualized revenue applicable to month t and Ct is revenue earned during month t...
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Month Cumul Annual Month
Mn Rate Rate Revenue Revenue

t xt x̂t Ĉt Ct
1 0.09188 0.09188 10,962 914
2 0.08805 0.17993 11,971 998
3 0.08440 0.26433 13,026 1,085
4 0.08090 0.34522 14,123 1,177
5 0.07755 0.42277 15,262 1,272
6 0.07434 0.49711 16,440 1,370

The table below demonstrates the mathematics using our revenue model month six as an example (alpha is the
long-term trend adjustment; Ref column refers to equation number)...

Variable Value Calculation Ref

α 0.00147 ((0.00327)(0.04168))÷ (0.09587− 0.00327) 62
x6 0.07434 (0.09587)(0.00147 + 0.04168(1− 0.00147− 0.04168)6)(0.00147 + 0.04168)−1 66
x̂6 0.49711 (0.09587)(0.00147 + 0.04168)−1((6)(0.00147) + 0.04168((1− 0.00147− 0.04168)−

(1− 0.00147− 0.04168)7)(0.00147 + 0.04168)−1) 70

Ĉ6 16,440 10, 000× Exp(0.49711) –
C6 1,370 16, 440÷ 12 –

We can add volatility to our revenue growth rate path by modeling in randomness. The table below presents
the first six months of our revenue model where the added variable Z allows us to model a stochastic revenue
growth rate path...

Random Month Month Total
Mn Number X Rate Y Rate X and Y
t Z x̄ ȳ x̄+ ȳ
0 – 0.09587 0.00000 0.09587
1 -1.3482 0.10265 -0.00678 0.09587
2 -1.6227 0.11225 -0.01637 0.09587
3 0.1354 0.10628 -0.01040 0.09587
4 -0.7746 0.10869 -0.01282 0.09587
5 2.9344 0.07756 0.01831 0.09587
6 1.0110 0.06782 0.02805 0.09587

The table below demonstrates the mathematics using our revenue model month six as an example (the column
Ref refers to equation number)...

Variable Value Calculation Ref

x̄6 0.06782 (1− 0.04168(1 + (2.00)(1.0110)))(0.07756) + (0.00147)(0.01831) 86
ȳ6 0.02805 0.09587− 0.06782 87

The demonstrate First Passage Time Equation (83) the month that the revenue growth rate will reach an an-
nualized rate of 20% (monthly rate = 0.01531) is...

h = ln

[
(µ+ ∆)(α+ θ)− αx0

θ x0

]
÷ ln(1− α− θ)

= ln

[
(0.01531)(0.00147 + 0.04168)− (0.00147)(0.09587)

(0.04168)(0.09587)

]
÷ ln(1− 0.00147− 0.04168)

= 46.3 (2)
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The Transition Matrix

We have the linear transformation T : R2 → R2 such that T (~v) = A~v. The matrix A is the transformation matrix
for T with respect to the standard basis and is in the following form...

A =

[
1− θ α
θ 1− α

]
(3)

The vector ~v is the transformed vector for T with respect to the standard basis. Vector ~v at any time t ≥ 0 is in
the following form...

~vt =

[
xt
yt

]
(4)

The vector ~v at time t = 1 is the matrix:vector product of the transformation matrix as defined in Equation (3)
above and the vector ~v at time t = 0. In equation form vector ~v at time t = 1 is...

~v1 = A~v0 (5)

The vector ~v at time t = 2 is the matrix:vector product of our transformation matrix and the vector ~v at time
t = 1. In equation form vector ~v at time t = 2 is...

~v2 = A~v1 (6)

If we substitute the right side of Equation (5) for ~v1 in Equation (6) then we can rewrite Equation (6) as...

~v2 = A(A~v0)

= A2 ~v0 (7)

After making this substitution the vector ~v at time t = 2 becomes the matrix:vector product of our transformation
matrix squared and the vector ~v at time t = 0. If we extend this logic to time periods greater than two it becomes
apparent that at any time t > 0 the equation for vector ~vt can be written as...

~vt = At ~v0 (8)

The vector at time zero is...

~v0 =

[
x0
0

]
(9)

Our goal is to transition the short-term vector ~v0 as defined by Equation (9) above to the long-term vector ~v∞
such that...

lim
t→∞

At ~v0 = ~vt[
1− θ α
θ 1− α

]∞ [
x0
0

]
=

[
µ

x0 − µ

]
(10)

As noted above vector ~v at time t can be written as the matrix:vector product of our transformation matrix and
vector ~v at time t− 1. Equation (8) can therefore be rewritten as...

~vt = A~vt−1[
xt
yt

]
=

[
1− θ α
θ 1− α

] [
xt−1
yt−1

]
[
xt
yt

]
=

[
(1− θ)xt−1 + α yt−1
θ xt−1 + (1− α) yt−1

]
(11)

Per Equation (11) we have the following two linear equations...

xt = (1− θ)xt−1 + α yt−1 (12)

yt = θ xt−1 + (1− α) yt−1 (13)
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The sum of Equations (12) and (13) is...

xt + yt = (1− θ)xt−1 + α yt−1 + θ xt−1 + (1− α) yt−1

= xt−1 + yt−1 (14)

Note that per Equation (14) the sum of the elements in vector ~vt does not change from one period to another. This
means that the sum of the elements in ~vt is always equal to the sum of the elements in ~v0 as defined by Equation
(9) above. In other words the following equality always holds...

xt + yt = x0 (15)

Remember that per Equation (10) above our goal is to transition vector ~v0 to vector ~v∞ over time. As time t→∞
we want vector ~v0 to become...

A∞ ~v0 = ~v∞ =

[
x∞
y∞

]
=

[
µ

x0 − µ

]
(16)

There are two variables in our transition matrix as defined by Equation (3) above. The first variable is θ, which is
the periodic rate of mean reversion. This variable is an exogenous variable given to us subject to constraints. The
second variable is α, which is the periodic long-term adjustment factor. This variable is an endogenous variable
and therefore must be calculated. How do we set the value of α such that the transition described in Equation (16)
takes place?

To determine α we will proceed as follows:

Step 1 - Determine the eigenbasis for our transition matrix as defined by Equation (3).
Step 2 - Perform a change of basis from the standard basis to the eigenbasis determined in Step 1.
Step 3 - Determine the value of α such that the transition described in Equation (16) is accomplished.

The Eigenbasis as a New Coordinate System

Eigenvalues and eigenvectors are critical to the understanding of the long-run properties of Markov chains. The
eigenbasis for our transformation matrix as defined in Equation (3) will consist of two eigenvalues, which we will
define as λ1 and λ2, and two eigenvectors, which we will define as ~z1 and ~z2. For the eigenvectors to span R2 the
eigenvectors ~z1 and ~z2 must be linearly independent.

If matrix A is a square matrix, which in our case it is, a non-zero vector ~z is an eigenvector of A if there is a
scalar λ such that...

A~z = λ~z (17)

The linear transformation T described above has matrix A and vector ~v as linear transformations with respect to
the standard basis. The standard basis, which we will define as S, in R2 is...

S =

{[
1 0
0 1

]}
(18)

Our goal here is to find the two eigenvectors of A so that we can create a new basis B for the linear transformation T .
We will then perform a change of basis from the standard basis S to the eigenbasis B. Once this change of basis has
been made we can set the value of α, which is the periodic long-run adjustment factor, such that Equation (16) holds.

Our first step will be to rearrange Equation (17) such that the zero vector ~0 is on the right hand side of the
equality. Noting that matrix I2 is the identity matrix in R2, Equation (17) becomes...

A~z = λ~z

A~z = λI2~z

λI2~z−A~z = ~0

(λI2 −A)~z = ~0 (19)
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The eigenvectors that we seek are non-zero vectors by definition. Note that vector ~z is a non-zero vector only if the
square matrix λI2 −A cannot be inverted, which means that the determinant of this matrix must be zero. The
matrix on the left hand side of Equation (19) can be rewritten as...

λI2 −A = λ

[
1 0
0 1

]
−
[
1− θ α
θ 1− α

]
=

[
λ 0
0 λ

]
−
[
1− θ α
θ 1− α

]
=

[
λ+ θ − 1 −α
−θ λ+ α− 1

]
(20)

Noting that the determinant of Equation (20) must be zero, the characteristic polynomial ∆(λ) of the transformation
matrix A is...

∆(λ) = |λI2 −A|
= [(λ+ θ − 1)(λ+ α− 1)]− [(−α)(−θ)]
= λ2 + λα− λ+ λθ + αθ − θ − λ− α+ 1− αθ
= λ2 + λ(α+ θ − 2) + (1− α− θ) (21)

If we make the following definitions...

a = 1 ...and... b = α+ θ − 2 ...and... c = 1− α− θ (22)

Then Equation (21) becomes...
∆(λ) = aλ2 + bλ+ c (23)

The eigenvalues of matrix A are found by setting Equation (23) to zero and solving for the two roots using the
definitions provided in Equation (22). The two eigenvalues of matrix A are...

λ =
−b±

√
b2 − 4ac

2a

=
−(α+ θ − 2)±

√
(α+ θ − 2)2 − (4)(1)(1− α− θ)

(2)(1)

=
2− α− θ ±

√
α2 + θ2 + 2αθ

2

=
2− α− θ ±

√
(α+ θ)2

2

=
2− α− θ ± (α+ θ)

2
(24)

Using Equation (24) the eigenvalue λ1 is...

λ1 =
2− α− θ + (α+ θ)

2
= 1 (25)

Using Equation (24) the eigenvalue λ2 is...

λ2 =
2− α− θ − (α+ θ)

2
= 1− α− θ (26)

To find the eigenvectors of matrix A given the eigenvalues determined above we need to solve Equation (19) for
each eigenvalue. Equation (19) rewritten as a system of linear equations is...

(λI2 −A)~z = 0[
λ+ θ − 1 −α
−θ λ+ α− 1

] [
x
y

]
=

[
0
0

]
(27)
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Given the first eigenvalue λ1 = 1 as defined by Equation (25) the system of linear equations that must be solved so
as to find the first eigenvector ~z1 is... [

[1] + θ − 1 −α
−θ [1] + α− 1

] [
x
y

]
=

[
0
0

]
[
θ −α
−θ α

] [
x
y

]
=

[
0
0

]
(28)

The two simultaneous equations from Equation (28) are...

θx− αy = 0 ...and... − θx+ αy = 0 (29)

The solution to the system of linear equations in Equation (29) is...

θx− αy = −θx+ αy

2 θx = 2αy

x =
α

θ
y (30)

Using the definition supplied by Equation (30) the first eigenvector ~z1 associated with the first eigenvalue λ1 is...

~z1 =

[
α
θ
1

]
(31)

The eigenspace Eλ1
associated with the first eigenvalue as defined by Equation (25) and the eigenvector as defined

by Equation (31) is...

Eλ=1 =

{[
x
y

]
= t

[
α
θ
1

] ∣∣∣∣t εR} (32)

Given the second eigenvalue λ2 = 1 − α − θ as defined by Equation (26) the system of linear equations that must
be solved so as to find the second eigenvector ~z2 is...[

(1− α− θ) + θ − 1 −α
−θ (1− α− θ) + α− 1

] [
x
y

]
=

[
0
0

]
[
−α −α
−θ −θ

] [
x
y

]
=

[
0
0

]
(33)

The two simultaneous equations from Equation (33) are...

−αx− αy = 0 ...and... − θx− θy = 0 (34)

The solution to the system of linear equations in Equation (34) is...

−αx− αy = −θx− θy
−(α+ θ)x = (α+ θ)y

x = −y (35)

Using the definition supplied by Equation (35) the second eigenvector ~z2 associated with the second eigenvalue λ2
is...

~z2 =

[
−1
1

]
(36)

The eigenspace Eλ2
associated with the second eigenvalue as defined by Equation (26) and the eigenvector as defined

by Equation (36) is...

Eλ=1−α−θ =

{[
x
y

]
= t

[
−1
1

] ∣∣∣∣t εR} (37)

The new basis for the linear transformation consists of the eigenvectors in Equations (32) and (37) above provided
that these column vectors are linearlly independent (i.e the eigenvectors span R2). The new basis, which is also
known as the eigenbasis, is...

B =

{[
α
θ
1

]
,

[
−1
1

]}
(38)
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As noted above the column vectors for our new basis as described by Equation (38) is a valid basis if and only if the
column vectors are linearlly independent. The vectors are independent if the solution to c1 and c2 in the equation
below is non-zero... [

α
θ −1
1 1

] [
c1
c2

]
=

[
0
0

]
(39)

If we multiply the vector of unknowns by the eigenbasis matrix in Equation (39) the two linear equations that need
to be solved are...

c1
α

θ
− c2 = 0 (40)

c1 + c2 = 0 (41)

If we add Equations (40) and (41) so as to eliminate c2 we get...

c1(1 +
α

θ
) = 0 (42)

Per Equation (42) as long as the ratio of α to θ is not negative one then c1 = 0. Per Equation (41) if c1 = 0 then
c2 = 0. If both c1 and c2 are zero then the columns in basis B are linearly independent and therefore B is a valid
basis. For B to be a valid basis then the following condition must be met...

α

θ
6= −1 (43)

Change Basis to the Eigenbasis and Solve for Alpha

The change of basis requires that we convert our beginning vector ~v0 as defined by Equation (9), our ending vector
~v∞ as defined by Equation (16), and our transformation matrix A as defined by Equation (3) from the standard
basis S to the eigenbasis B. We will accomplish this via the utilization of a change of basis matrix which is a square
matrix that consists of the column vectors of our new basis as defined in Equation (38) above. The change of basis
matrix C is therefore...

C =

[
α
θ −1
1 1

]
(44)

To perform the change of basis we need the determinant and inverse of the change of basis matrix C as defined by
Equation (44) above. The determinant of matrix C is...

|C| =
(
α

θ

)
(1)− (1)(−1) =

α

θ
+ 1 =

α+ θ

θ
(45)

The inverse of matrix C using the determinant as defined by Equation (45) above is...

C−1 =
1

|C|

[
1 1
−1 α

θ

]
=

θ

α+ θ

[
1 1
−1 α

θ

]
=

[ θ
α+θ

θ
α+θ

−θ
α+θ

α
α+θ

]
(46)

Our beginning vector at time zero as defined by Equation (9) converted to the new basis B is...

[~v0]B = C−1 ~v0 =

[ θ
α+θ

θ
α+θ

−θ
α+θ

α
α+θ

] [
x0
0

]
=

[ θ
α+θx0
−θ
α+θ x0

]
(47)

Our ending vector at time infinity as defined by Equation (16) converted to the new basis B is...

[~v∞]B = C−1 ~v∞ =

[ θ
α+θ

θ
α+θ

−θ
α+θ

α
α+θ

] [
µ

x0 − µ

]
=

[ θ
α+θx0

−θ
α+θ µ+ α

α+θ (x0 − µ)

]
(48)

We will define matrix D as the transformation matrix A converted to the new basis B. The standard way of
converting a matrix from one basis to another is via the following equation...

D = C−1A C (49)
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Our transformation matrix A multiplied by the change of basis matrix C can be written as matrix A times the
basis vectors in matrix C as defined by the following equation...

A C =
[
A~z1 A~z2

]
(50)

Note that per the definition of eigenvalues and eigenvectors the following definitions hold...

A~z1 = λ1~z1 (51)

A~z2 = λ2~z2 (52)

After substituting Equations (51) and (52) into Equation (50) we get...

A C =
[
λ1~z1 λ2~z2

]
=
[
~z1 ~z2

] [λ1 0
0 λ2

]
= C

[
λ1 0
0 λ2

]
(53)

After substituting Equation (53) into Equation (49) we get the definition of the matrix D which is...

D = C−1A C = C−1C

[
λ1 0
0 λ2

]
=

[
λ1 0
0 λ2

]
(54)

Drop in the values of lambda...

D =

[
1 0
0 1− α− θ

]
(55)

Matrix D raised to the t power is...

Dt =

[
1 0
0 1− α− θ

]t
=

[
1 0
0 (1− α− θ)t

]
(56)

Per the matrix above we have the numbers 1 and 1−α− θ across the diagonals and zeros elsewhere. We will make
the following constraint definition...

0 < 1− α− θ < 1 (57)

Note that per the constraint in Equation (57) above 1−α− θ is greater than zero and less than one. When matrix
D is raised to an infinite power matrix element a11 (λ1) stays at one while matrix element a22 (λ2) goes to zero
such that matrix D becomes...

D∞ = lim
t→∞

Dt = lim
t→∞

[
1 0
0 1− α− θ

]t
=

[
1 0
0 0

]
(58)

Our vector at time infinity as defined by Equation (48) as a function of the transformation matrix D at time infinity
as defined in Equation (58) and our vector at time zero as defined by Equation (47) is...

D∞[~v0]B = [~v∞]B[
1 0
0 0

] [ θ
α+θx0
−θ
α+θ x0

]
=

[ θ
α+θx0

−θ
α+θ µ+ α

α+θ (x0 − µ)

]
[

θ
α+θx0

0

]
=

[ θ
α+θx0

−θ
α+θ µ+ α

α+θ (x0 − µ)

]
(59)

We can now solve for alpha. Equation (59) gives us the following simulaneous equations...

θ

α+ θ
x0 =

θ

α+ θ
x0 (60)

0 =
−θ
α+ θ

µ+
α

α+ θ
(x0 − µ) (61)

Note that Equation (60) above does not need to be solved because x0 + y0 are on both sides of the equation. The
solution to Equation (61) in terms of the undefined variable alpha is...

−θ
α+ θ

µ+
α

α+ θ
(x0 − µ) = 0

−θ µ+ α (x0 − µ) = 0

α (x0 − µ) = µ θ

α =
µ θ

x0 − µ
(62)
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The Vector Values of X and Y

Per Equation (8) above vector ~v at time t can be determined by taking the matrix-vector product of matrix A to
the t’th power and vector ~v at time zero. This linear transformation is done in the standard basis S. The first and
second elements of the transformed vector ~vt are xt and yt, respectively. We can also determine vector ~v at time t
via the following steps...

Step 1 - Convert ~v0 from the standard basis S to the eigenbasis B per Equation (47)
Step 2 - Perform the linear transformation using matrix D as defined by Equation (54)
Step 3 - Convert the transformed vector back to the standard basis S

This S ⇒ B ⇒ S operation in equation form is...

~vt = C

[
Dt

[
C−1 ~v0

]]
(63)

The matrix vector product of matrix D raised to the t power, as defined by Equation (56), and vector ~v at time
zero converted to the eigenbasis, as defined by Equation (47), is...

Dt

[
C−1 ~v0

]
=

[
1 0
0 (1− α− θ)t

] [ θ
α+θx0
−θ
α+θ x0

]
=

[
x0 θ (α+ θ)−1

−x0 θ (1− α− θ)t (α+ θ)−1

]
(64)

The matrix vector product of C, as defined by Equation (44), and the vector Dt[C−1 ~v0] as defined by Equation
(64) above, is...

C

[
Dt

[
C−1 ~v0

]]
=

[
α
θ −1
1 1

] [
x0 θ (α+ θ)−1

−x0 θ (1− α− θ)t (α+ θ)−1

]
=

[
x0 α (α+ θ)−1 + x0 θ (1− α− θ)t(α+ θ)−1

x0 θ (α+ θ)−1 − x0 θ (1− α− θ)t (α+ θ)−1

]
=

[
x0 (α+ θ (1− α− θ)t)(α+ θ)−1

x0 (θ − θ (1− α− θ)t)(α+ θ)−1

]
(65)

From Equation (65) above we have two equations that define the values of xt and yt, respectively. The equation
for xt, which is vector ~v element one in the standard basis S, is...

xt = x0 (α+ θ (1− α− θ)t)(α+ θ)−1 (66)

The equation for yt, which is vector ~v element two in the standard basis S, is...

yt = x0 (θ − θ (1− α− θ)t)(α+ θ)−1 (67)

Per Equation (15) above the sum of xt and yt will always equal x0. Rather than use Equation (67) as the definition
of yt we will use the following definition of yt for the sake of computational convenience...

yt = x0 − xt (68)
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The Cumulative Values of X and Y

We want an equation for the cumulative value of x over the time interval [1, t] where t ≥ 1. Using the definition of
x in Equation (66) above the equation for the cumulative value of x over the aforementioned time interval is...

x̂t =

t∑
i=1

xi

=

t∑
i=1

x0 (α+ θ (1− α− θ)i)(α+ θ)−1

=

t∑
i=1

x0 α (α+ θ)−1 +

t∑
i=1

x0 θ (1− α− θ)i(α+ θ)−1

= x0 α (α+ θ)−1
t∑
i=1

i+ x0 θ (α+ θ)−1
t∑
i=1

(1− α− θ)i

= t x0 α (α+ θ)−1 + x0 θ (α+ θ)−1
t∑
i=1

(1− α− θ)i (69)

After replacing the summation in Equation (69) with Equation (93) the equation for the cumulative value of x over
the time interval [1, t] becomes...

x̂t = t x0 α (α+ θ)−1 + x0 θ (α+ θ)−1((1− α− θ)− (1− α− θ)t+1) (α+ θ)−1

= x0 (α+ θ)−1 (t α+ θ ((1− α− θ)− (1− α− θ)t+1) (α+ θ)−1) (70)

Using the definition of y in Equation (68) above the equation for the cumulative value of y over the time interval
[1, t] is...

ŷt =

t∑
i=1

[
x0 − xi

]

=

t∑
i=1

x0 −
t∑
i=1

xi

= t x0 − x̂t (71)

The Derivatives of X and Y

The first and second derivatives of vector values xt and yt will define the shape of our curves. The first derivative
of vector ~v element one as defined by Equation (66) is...

δxt
δt

= x0 θ ln(1− α− θ)(1− α− θ)t(α+ θ)−1 (72)

The second derivative of vector ~v element one as defined by Equation (66) is...

δ2xt
δt2

= x0 θ ln(1− α− θ)2(1− α− θ)t(α+ θ)−1 (73)

The first derivative of vector ~v element two as defined by Equation (68) is...

δyt
δt

= −δxt
δt

(74)

The second derivative of vector ~v element two as defined by Equation (68) is...

δ2yt
δt2

= −δ
2xt
δt2

(75)

Note that if 0 < 1 − α − θ < 1 then the first derivative of x is negative and the second derivative of x is positive,
which means that x decreases over time but at a decreasing rate.
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First Passage Time

Remember that vector ~v at times zero (Equation (9)) and infinity (Equation (16)) are...

~v0 =

[
x0
0

]
...and... ~v∞ =

[
µ

x0 − µ

]
(76)

We want to calculate the amount of time that it would take x0 to hit some target rate µ+ ∆. We want to calculate
the value of vector subscript h such that vector ~v0 in Equation (9) ends up in the following form by time h...

~vh =

[
µ+ ∆

x0 − µ−∆

]
(77)

The value of subscript h is the first passage time. We will use first passage time to calibrate our curves. To make
this calculation we will again make use of the Eigenbasis B as described above. The first step in the calculation
will be to convert our beginning vector ~v0, which is in the standard basis S, to the eigenbasis B as was done in
Equation (47) above. Vector ~v0 converted to the eigenbasis is...

[~v0]B = C−1v0 =

[ θ
α+θx0
−θ
α+θ x0

]
(78)

The second step in the calculation will be to convert our ending vector ~vh, which is in the standard basis S and is
defined by Equation (77) above, to the eigenbasis B. Using the inverse of our change of basis matrix C as defined
by Equation (46), vector ~vh converted to the eigenbasis is...

[~vh]B = C−1v0 =

[ θ
α+θ

θ
α+θ

−θ
α+θ

α
α+θ

] [
µ+ ∆

x0 − µ−∆

]
=

[ α
α+θ x0

α
α+θ x0 − (µ+ ∆)

]
(79)

The third step is to set up the linear transformation using matrix D as defined by Equation (56). The linear
transformation in equation form is...

Dh[~v0]B = [~vh]B[
1 0
0 (1− α− θ)h

] [ θ
α+θx0
−θ
α+θ x0

]
=

[ α
α+θ x0

−θ
α+θ (1− α− θ)hx0

]
(80)

The system of linear equations represented by Equation (80) above is...

θ

α+ θ
x0 =

θ

α+ θ
x0 (81)

−θ
α+ θ

(1− α− θ)hx0 =
α

α+ θ
x0 − (µ+ ∆) (82)

The first equation (Equation (81)) does not need to be solved because the right and left sides of the equality are
the same. We can determine first passage time by solving the second equation (Equation (82)) in terms of h. The
equation for first passage time is therefore...

−θ
α+ θ

(1− α− θ)hx0 =
α

α+ θ
x0 − (µ+ ∆)

−θ(1− α− θ)hx0 = αx0 − (µ+ ∆)(α+ θ)

(1− α− θ)h =
(µ+ ∆)(α+ θ)− αx0

θ x0

h ln(1− α− θ) = ln

[
(µ+ ∆)(α+ θ)− αx0

θ x0

]
h = ln

[
(µ+ ∆)(α+ θ)− αx0

θ x0

]
÷ ln(1− α− θ) (83)
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Stochastic Paths With Mean Reversion

As described in the sections above the vector ~vt+1 can be written as the matrix-vector product of our transformation
matrix A and ~vt. From the vantage point of time t vector ~vt is known at time t and vector ~vt+1 is unknown at
time t. To model the expected growth rate path as a stochastic path we will redefine the transformation matrix A
as defined by Equation (3) above as..

Ā =

[
1− θ (1 + σ Z) α
θ (1 + σ Z) 1− α

]
...where... Z ∼ N [0, 1] (84)

From the vantage point of time t vector ~vt+1 is a linear transformation of vector ~vt and the redefined transition
matrix Ā. In equation form this transformation is...

~vt+1 = Ā~v1[
x̄t+1

ȳt+1

]
=

[
1− θ (1 + σ Z) α
θ (1 + σ Z) 1− α

] [
xt
yt

]
(85)

Note that because at time t we don’t know the values for xt+1 and yt+1 these vector elements are written as x̄t+1

and ȳt+1, respectively.

The speed at which the short-term unsustainable growth rate declines to the long-term sustainable growth rate
is a function of the rate of mean reversion (θ). If this mean reversion rate is greater than expected then the short-
term rate will deline to the long-term rate faster than expected. If the mean reversion rate is less than expected
the short-term rate will deline to the long-term rate slower than expected. By adding the (1 + σ Z) multiplier in
the matrix above we have converted the deterministic mean reversion rate to a stochastic mean reversion rate. Per
Equation (85) above we have the following two stochastic linear equations...

x̄t+1 = (1− θ (1 + σ Z))xt + α yt (86)

ȳt+1 = x0 − x̄t+1 (87)

The mean and variance of the random growth rate x̂t+1 per Appendix Equations (94) and (95) are...

mean = E
[
x̄t+1

]
= (1− θ)xt + α yt (88)

variance = E
[
x̄2t+1

]
−
{
E
[
x̄t+1

]}2

= θ2σ2x2t (89)

The mean and variance of the random growth rate ȳt+1 per Appendix Equations (96) and (97) (Uses Equations
(88) and (89)) are...

mean = E
[
ȳt+1

]
= x0 − (1− θ)xt − α yt (90)

variance = E
[
ȳ2t+1

]
−
{
E
[
ȳt+1

]}2

= E
[
x̄2t+1

]
−
{
E
[
x̄t+1

]}2

= θ2σ2x2t (91)

Appendix

A. If 0 ≤ 1− α− θ ≤ 1 then the equation for the sum of 1− α− θ over the time interval [0, t] is...

t∑
i=0

(1− α− θ)i =

∞∑
i=0

(1− α− θ)i − (1− α− θ)t+1
∞∑
i=0

(1− α− θ)i

=

{
1− (1− α− θ)t+1

} ∞∑
i=0

(1− α− θ)i

=

{
1− (1− α− θ)t+1

}{
1

1− (1− α− θ)

}
=

1

α+ θ
(1− (1− α− θ)t+1) (92)
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B. If 0 ≤ 1− α− θ ≤ 1 then the equation for the sum of 1− α− θ over the time interval [1, t] noting the results of
the equation in Appendix A above is...

t∑
i=1

(1− α− θ)i =

{ t∑
i=0

(1− α− θ)i
}
− 1

=
1

α+ θ
(1− (1− α− θ)t+1)− 1

=
1

α+ θ
((1− α− θ)− (1− α− θ)t+1) (93)

C. The expected value of the random growth rate x̄t+1 as defined by Equation (86) is...

E
[
x̄t+1

]
= E

[
(1− θ (1 + σ Z))xt + α yt

]
= E

[
xt − θ xt − θ σ Z xt + α yt

]
= E

[
xt

]
− E

[
θ xt

]
− E

[
θ σ Z xt

]
+ E

[
α yt

]
= xt − θ xt − θ σ xtE

[
Z

]
+ α yt

= (1− θ)xt + α yt (94)

D. The expected value of the random growth rate x̄t+1 squared as defined by Equation (86) is...

E
[
x̄2t+1

]
= E

[
(xt − θ xt − θ σ Z xt + α yt)

2

]
= E

[
x2t − 2θx2t − 2θσZx2t + 2αxtyt + θ2x2t + 2θ2σZx2t − 2θαxtyt + θ2σ2Z2x2t − 2θσαZxtyt + α2y2t

]
= E

[
x2t

]
− E

[
2θx2t

]
− E

[
2θσZx2t

]
+ E

[
2αxtyt

]
+ E

[
θ2x2t

]
+ E

[
2θ2σZx2t

]
− E

[
2θαxtyt

]
+

E
[
θ2σ2Z2x2t

]
− E

[
2θσαZxtyt

]
+ E

[
α2y2t

]
= x2t − 2θx2t − 2θσx2tE

[
Z

]
+ 2αxtyt + θ2x2t + 2θ2σx2tE

[
Z

]
− 2θαxtyt + θ2σ2x2tE

[
Z2

]
− 2θσαxtytE

[
Z

]
+ α2y2t

= x2t − 2θx2t + 2αxtyt + θ2x2t − 2θαxtyt + θ2σ2x2t + α2y2t (95)

E. The expected value of the random growth rate ȳt+1 as defined by Equation (87) (Uses Appendix Equation (94))
is...

E
[
ȳt+1

]
= E

[
x0 − xt+1

]
= E

[
x0

]
− E

[
xt+1

]
= x0 − E

[
xt+1

]
(96)
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F. The expected value of the random growth rate ȳt+1 squared as defined by Equation (87) (Uses Appendix Equation
(95)) is...

E
[
ȳt+1

]
= E

[
(x0 − xt+1)2

]
= E

[
x20 − 2x0xt+1 + x2t+1

]
= E

[
x20

]
− E

[
2x0xt+1

]
+ E

[
x2t+1

]
= x20 − 2x0E

[
xt+1

]
+ E

[
x2t+1

]
(97)
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